
Stereoselective Synthesis ofâ-Mannopyranosides via
the Temporary Silicon Connection Method

Gilbert Stork* and James J. La Clair†

Department of Chemistry, Columbia UniVersity
New York, New York 10027

ReceiVed September 18, 1995

Increasing interest in the synthesis of biologically significant
carbohydrate glycosides and conjugates has led to the develop-
ment of ever more selective methods for the control of
stereochemistry at the anomeric center. The stereospecific
formation of â-mannopyranosideshas proved particularly
difficult to achieve, however, in spite of considerable effort,
because the vicinal cis (axial)â-hydroxyl group blocks access
to theâ-face.1 The presence of theâ-mannopyranoside entity,
inter alia, in the core region of N-linked glycoproteins (cf. Figure
1) warrants significant attention toward its construction.
A general solution to this type of problem was introduced in

1983, with the demonstration that a carbon substituent could
be introduced, regio- and stereospecifically, in many ring
systems by using thetemporary attachment of the desired
substituent to a stereochemistry-controlling hydroxyl within the
ring system.2 Internal transfer of the substituent by cyclization
cis to the controlling hydroxyl then allowed completion of the
process by removal of the temporary connector. Possible
choices for the latter are limited. We made use of a temporary
acetal link in a prostaglandin synthesis3 and a temporary silyl
ether connection in a method for the controlled introduction of
methyl groups.4 In these particular examples, the tethered
entities were cyclized by free-radical processes.
In the carbohydrate area, the temporary connection method

was first applied in the acetal version to the stereospecific
synthesis of C-glycosides.5 We, in turn, explored the temporary
silyl ether version for the same purpose6 and found it especially
significant that the approach was successful even for the
synthesis of aâ-C-mannopyranoside, thus obtained free from
its R-isomer (cf.1 f 2, Figure 2).

So far as the synthesis of typicalâ-mannopyranosides, the
first applications of the temporary tethering concept were carried
out, independently, by Hindsgaul7 and us,8 using respectively
mixed acetals and silyl ether connectors. More recently, Ito
and Ogawa demonstrated the efficient use ofp-methoxyben-
zylidene acetals.9

We now report our further exploration of the temporary silyl
ether route toâ-mannopyranosides. As we had done previously,
we used the sulfoxide departing group method of Kahne10 to
attempt the formation of a variety ofâ-mannopyranoside-linked
disaccharides. In our initial sequence, we performed the
required thiophenyl to phenyl sulfoxide oxidationafter initial
formation of the mixed silaketal. This was satisfactory when
â-mannoside formation involved connection of the second sugar
via itsprimaryalcohol, but we found it, in general, much more
efficient to use thepreformedmannose sulfoxide3,11 because
we discovered that themixedsilaketals4 could be produced
simply by the interaction of an equimolar mixture of the
mannose sulfoxide3 and the sugar to be tethered with 1 equiv
of dimethyldichlorosilane, thus avoiding isolation of the sensitive
chlorodimethylsilyl ether intermediate (Scheme 1).12

Activation of the tethered species4was then carried out with
triflic anhydride in the presence of 2,6-di-tert-butylpyridine,
keeping the temperature at-100 °C during addition of the
anhydride to ensure complete stereoselectivity. Upon warming
these solutions to room temperature, the tethered species from
glucose derivatives5,6 6,13 and 714 produced the desired
disaccharides11, 12, and 13, free from theirR-mannoside
anomers,15 in 92, 65, and 82% yields, respectively.16

These results were encouraging, because they showed that
the temporary silicon connection was able to give the desired
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Figure 1. Core pentasaccharide of N-linked glycoproteins.

Figure 2.
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â-mannoside attachment of glucose derivatives, in reasonable
yields, not only via the primary 6-hydroxyl but also via the
secondary 2- or 3-hydroxyls. The remaining secondary 4-hy-
droxyl of glucose is considerably more hindered, but because
it is involved in a number of biologically importantâ-mannoside
polysaccharides, we gave that case particularly thorough atten-
tion. The tethered species,17, was made in the usual way from
8,17 in essentially quantitative yield, but triflic anhydride
treatment produced the desired 4-O-glucosyl â-mannoside
141k,18 in only 12% yield. The major product (82%) retained
the dimethylsilyl connector, although it had lost the phenyl
sulfoxide and one of the benzyl groups.19 After much chemical
and spectroscopic study,20 the structure of this unusual product
was determined to be18, a conclusion which was confirmed
by showing the identity of the product of desilylation and
benzylation of18with the product of benzylation of11 (Scheme
2). The surprising loss of the O-benzyl group from the tethered
glucose moiety actually took place at ca.-20 °C, a temperature

lower than that necessary to complete the usual disaccharide
formation (e.g.,6 f 12).
Whatever its cause in the particular case of8 (conformational

and/or electronic effects?), the problem was apparently not a
necessary corollary of attempted connection at the 4-hydroxyl
of glucose. For example, the tethered 6-deoxyspecies corre-
sponding to921 did lead to theâ-mannoside15 in 48% yield.
Even more biologically relevant (cf. Figure 1), the tethered
intermediate from 2-deoxy-2-phthalimidoglucose derivative107
led to the hoped-for disaccharide1618 in a serviceable 54%
yield.22 It seems clear that the temporary silicon connection
may prove useful in the construction ofâ-mannopyranoside
units.
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Scheme 1

Scheme 2a

a (a) Tf2O, 2,6-di-tert-butylpyridine, CH2Cl2, Et2O,-100°C to room
temperature, 2.5 h, 82%. (b) TBAF, THF, room temperature, 1 h, 98%.
(c) Ac2O, DMAP, pyridine, 15 h, 89%. (d) NaH, BnBr, DMF, 0°C to
room temperature, 16 h.
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