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Stereoselective Synthesis gi-Mannopyranosides via
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Figure 1. Core pentasaccharide of N-linked glycoproteins.
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Increasing interest in the synthesis of biologically significant 1 eph 2 N
carbohydrate glycosides and conjugates has led to the developrigyre 2.
ment of ever more selective methods for the control of
stereochemistry at the anomeric center. The stereospecific SO far as the synthesis of typicéimannopyranosides, the
formation of f-mannopyranosideshas proved particularly  first applications of the temporary tethering concept were carried
difficult to achieve, however, in spite of considerable effort, out, independently, by Hindsgduind us} using respectively
because the vicinal cis (axigBhydroxyl group blocks access ~Mmixed acetals and silyl ether connectors. More recently, Ito
to thep-facel The presence of the-mannopyranoside entity, ~and Ogawa demonstrated the efficient usepahethoxyben-
inter alia, in the core region of N-linked glycoproteins (cf. Figure Zzylidene acetal8. ) )
1) warrants significant attention toward its construction. We now report our further exploration of the temporary silyl
A general solution to this type of problem was introduced in  €ther route tg--mannopyranosides. As we had done previously,
1983, with the demonstration that a carbon substituent could We used the sulfoxide departing group method of Kahue
be introduced, regio- and stereospecifically, in many ring attempt the formation of a variety gfmannopyranoside-linked
systems by using théemporary attachment of the desired disaccharides. In our initial sequence, we performed the
substituent to a stereochemistry-controlling hydroxyl within the required thiophenyl to phenyl sulfoxide oxidatiafter initial
ring systen? Internal transfer of the substituent by cyclization formation of the mixed silaketal. This was satisfactory when
cis to the controlling hydroxyl then allowed completion of the /A-mannoside formation involved connection of the second sugar
process by removal of the temporary connector. Possible Via its primary alcohol, but we found it, in general, much more
choices for the latter are limited. We made use of a temporary efficient to use theoreformedmannose sulfoxid8,'* because
acetal link in a prostaglandin syntheésand a temporary silyl we discovered that thenixed silaketals4 could be produced
ether connection in a method for the controlled introduction of Simply by the interaction of an equimolar mixture of the
methyl groupg. In these particular examples, the tethered Mannose sulfoxid& and the sugar to be tethered with 1 equiv

entities were cyclized by free-radical processes.

of dimethyldichlorosilane, thus avoiding isolation of the sensitive

In the carbohydrate area, the temporary connection methodchlorodimethylsilyl ether intermediate (Scheme'd).

was first applied in the acetal version to the stereospecific
synthesis of C-glycosidés We, in turn, explored the temporary

silyl ether version for the same purpésad found it especially

Activation of the tethered specidsvas then carried out with
triflic anhydride in the presence of 2,6-th#t-butylpyridine,
keeping the temperature at100 °C during addition of the

significant that the approach was successful even for the anhydride to ensure complete stereoselectivity. Upon warming

synthesis of g8-C-mannopyranosidethus obtained free from
its a-isomer (cf.1 — 2, Figure 2).
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Scheme 2

p-mannoside attachment of glucose derivatives, in reasonable
yields, not only via the primary 6-hydroxyl but also via the ! eo 4

N BnO. 3
secondary 2- or 3-hydroxyls. The remaining secondary 4-hy- B?&g \mom a Bro— SN 50 .
. . . n
droxyl of glucose is considerably more hindered, but because " Bro OcH, B"B‘:Eg&, m

O

itis involved in a number of biologically importafgtmannoside 0”>en 18 OCHs
polysaccharides, we gave that case particularly thorough atten- 17 lb

tion. The tethered speciek/, was made in the usual way from BnO—  ogn BnO—

8,17 in essentially quantitative yield, but triflic anhydride o B"ﬁ&&o o TR o

treatment produced the desiredO4glucosyl S-mannoside Bfg‘iﬁc’ Bnoﬁ°

14118 in only 12% yield. The major product (82%) retained BC  ocm, 10r 0 ook

the dimethylsilyl connector, although it had lost the phenyl = *C20R - 0ho

sulfoxide and one of the benzyl groul¥s After much chemical a(a) TH,0, 2,6-ditert-butylpyridine, CHCl,, EtO, —100°C to room

and spectroscopic studythe structure of this unusual product temperature, 2.5 h, 82%. (b) TBAF, THF, room temperature, 1 h, 98%.
was determined to b&8, a conclusion which was confirmed (c) Ac.O, DMAP, pyridine, 15 h, 89%. (d) NaH, BnBr, DMF,C to

by showing the identity of the product of desilylation and room temperature, 16 h.

benzylation ofL8 with the product of benzylation dfl (Scheme lower than that necessary to complete the usual disaccharide
2). The surprising loss of the O-benzyl group from the tethered formation (e.g.6 — 12).

glucose moiety actually took place at ea20 °C, a temperature Whatever its cause in the particular cas® ¢€onformational
and/or electronic effects?), the problem was apparently not a
(15) The presence of NOEs between the hydrogen at the anomeric centemecessary corollary of attempted connection at the 4-hydroxyl

of the mannose substituent and its correspondisg@ G hydrogens i _
strongly supports thg-stereochemistry of mannosid&g, 13, and15. An of glucose. For example, the tetheredl€xyspecies corre

additional NOE between the anomeric hydrogen and the proximal hydrogen SPonding t092_1 did .lead to thqﬁ'mannoside]-5 in 48% yield.
on the glucosidic moiety provided further support for the assigned Even more biologically relevant (cf. Figure 1), the tethered

connectivity. intermediate from 2-deoxy-2-phthalimidoglucose derivatiog
16) Yields for both steps of the method as well as the overall recover . . . .
of éisgccharide are tabu|§ted below: Y led to the hoped-for disaccharidé!® in a serviceable 54%
i i yield?? It seems clear that the temporary silicon connection
substrate tethering glycosylation overall . . .
may prove useful in the construction gfmannopyranoside
5 89% 92% 82% i
units.
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